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Abstract

The δf particle-in-cell simulation method has been extended to allow the perturba-
tion to be defined relative to any reference state, and a switching algorithm that can
smoothly switch between the δf and total-f methods has been developed. The im-
proved δf method has been successfully applied to simulate the collective dynamics
of high-intensity bunched beams. Systematic studies of the influence of finite bunch
length on the spectra of collective excitations in high-intensity ion beams, and the
linear and nonlinear evolution of the temperature anisotropy instability has been
carried out.
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1 Introduction

High-intensity bunched ion beams are a key component of beam-driven inertial confinement
fusion designs and beam-driven high energy density physics experiments. Even though the
collective dynamics and instabilities for long coasting beams have been studied extensively,
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our basic understanding of collective effects in high-intensity bunched beams is still very
limited. In particular, collective effects induced by strong coupling between the longitudinal
and transverse dynamics are of fundamental importance for the applications of high-intensity
bunched beams. For the ongoing Neutralized Drift Compression Experiment (NDCX) at the
U.S. Heavy Ion Fusion Sciences Virtual National Laboratory [1], it is necessary to systemat-
ically study the transverse and longitudinal coupling and its effects on collective dynamics
and instabilities. The self-consistent theoretical framework for studying collective effects
is provided by the nonlinear Vlasov-Maxwell equations [2–4]. A corresponding numerical
method, the δf particle-in-cell (PIC) simulation method, has been developed [5,6] to solve
the nonlinear Vlasov-Maxwell equations with significantly reduced noise. This theoretical
and numerical framework has been successfully applied to study stable beam propagation
[7], electron-ion two-stream (electron cloud) instabilities [8–14], and collective instabilities
driven by large energy anisotropy [15–18] for long coasting beams.

In order to effectively simulate the collective dynamics in high-intensity bunched beams, we
have developed two new improvements to the δf PIC simulation method. First, the algorithm
is extended to allow the perturbation to be defined relative to any reference state, instead of
an exact equilibrium solution as required in the standard δf simulation method [19,9]. This is
particularly critical for high-intensity bunched beams, because exact equilibrium solution for
bunched beams with temperature anisotropy does not exist [20], due the coupling between the
longitudinal and transverse dynamics induced by the nonlinear space-charge force. Second,
a smooth-switching algorithm is developed which can switch smoothly between the δf and
total-f methods. When applying the standard δf method to simulate high-intensity bunched
beams, it is found [6] that wave-particle interactions may result in large weight growth for
resonant or nearly resonant simulation particles, which in turn produces large error fields
and invalidates the simulation results. The switching scheme is able to automatically switch
to the total-f method when the weight becomes large, and still takes full advantage of
the low-noise feature of the δf algorithm when the weight is small. With these two new
improvements, we have carried out extensive numerical studies of the collective dynamics
in high-intensity bunched beams. It is found that the interplay between beam intensity
and finite bunch geometry introduces new collective modes, and the linear and nonlinear
characteristics of the temperature anisotropy instabilities are significantly modified by the
finite bunch geometry.

The paper is organized as follows. In Sec. 2, the theoretical model and the improved δf
method is described. Simulation results of collective excitations and temperature anisotropy
instabilities for high-intensity bunched beams are reported in Sec. 3.
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2 Theoretical model and the new δf PIC algorithm

We consider a high-intensity bunched ion beam confined in both the r− and z− directions
by an external smooth-focusing force in the beam frame

Ffoc = −mω2

⊥
x⊥ − mω2

zzez . (1)

Here, ω⊥ and ωz are the constant transverse and longitudinal applied focusing frequencies in
the smooth-focusing approximation. In the beam frame, the dynamics of the bunched beam
is described by the nonlinear Vlasov-Maxwell equations [2]

{
∂

∂t
+ v ·

∂

∂x
− [m

(
ω2

⊥
x⊥ + ω2

zzez

)
+ e(∇φ −

vz

c
∇⊥Az)] ·

∂

∂p

}
f(x,p, t) = 0, (2)

∇2φ = −4πe
∫

d3pf(x,p, t), (3)

∇2Az = −
4π

c
e
∫

d3pvzf(x,p, t), (4)

where f is particle distribution function in phase space, and e and m are the particle charge
and rest mass, respectively. In the new δf PIC algorithm for numerically solving the nonlinear
Vlasov-Maxwell equations Eqs. (2)-(4), the particle’s distribution is partitioned as

f = αf0 + wF , (5)

where f0 is a known reference distribution function. The coefficient α is a function of time
and can take on values between 0 and 1. The case of α = 0 corresponds to the total-f method,
and the case of α = 1 corresponds to the standard the δf method. The perturbed distribution
is constructed from the distribution function F of simulation particles, the weight function
w in phase space, and the coefficient α as [6]

δf = (α − 1) f0 + wF . (6)

Because the simulation particles follow the same trajectories as the physical particles, F
satisfies the Vlasov equation (2) as well. But F need not be the same as f .

From Eq. (5), it is simple to derive the governing equation for the evolution of w,

dw

dt
= −(g − w)

1

f0

[(
df0
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)

δ

+

(
df0

dt

)

0

]
+

w − g

α

dα

dt
, (7)
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where
(
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Here, δφ ≡ φ − φ0 and δAz ≡ Az − Az0 are the field perturbations relative to the reference
potentials (φ0, Az0), which are chosen to satisfy

∇2φ0 = −4πe
∫

d3pf0(x,p, t), (10)

∇2Az0 = −
4π

c
e
∫

d3pvzf0(x,p, t). (11)

For the perturbed fields, Maxwell’s equations are given by

∇2δφ = −4πe
∫

d3p δf(x,p, t) , (12)

∇2δAz = −
4π

c
e
∫

d3p vzδf(x,p, t) , (13)

where δf is calculated from Eq. (6).

If possible, it is desirable to choose the reference state (φ0, Az0, f0) as an exact solution, either
time-dependent or time-independent, to the Vlasov-Maxwell equations (2)-(4), such that the
(df0/dt)

0
term in Eq. (7) vanishes. For most applications using the standard δf method, (φ0,

Az0, f0) are chosen to correspond to an equilibrium solution with ∂/∂t = 0. For bunched
beams, if the energy is isotropic in the beam frame, the reference state can be chosen to be
an exact equilibrium solution. However, for bunched beams with energy anisotropy, exact
equilibrium solution does not exist due to the lack of independent longitudinal and transverse
invariants of the particle dynamics [20]. In this case, we can choose a time-independent
reference distribution (φ0, Az0, f0) that is close to a quasi-equilibrium state.

The term g in Eq. (7) is defined as g ≡ f/F , which is a constant of the motion for each
simulation particle, i.e., dg/dt = 0, because df/dt = 0 and dF/dt = 0. Therefore, g is
determined from the initial conditions of the simulation particles. If F is initially loaded in
to be the same as f , then g ≡ 1 and the distributions of physical particles and simulation
particles are the same.

Different from the standard δf method, the dynamics of w is now coupled to that of α, which
can be either prescribed or determined from some rules coupled back to the amplitude of
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w. When α varies smoothly from 1 to 0 during the simulation, the δf method is smoothly
switched to the total-f method. The purpose of the switch is to overcome the noise brought
on by the large weight of nearly-resonant simulation particles [6]. Before the switch, the
simulation still makes effective use of the low-noise feature of the δf method for small
weight to follow the detailed evolution of the unstable mode structures. When the weight
function becomes large during the nonlinear phase, the low-noise advantage of the δf method
is reduced and the simulation is switched to the total-f method to avoid the large noise
induced by nearly-resonant simulation particles. The coefficient α is generally allowed to
depend on phase space coordinates, such that different simulation particles will be switched
at different time.

In the present study, α is chosen to depend only on time t to realize a smooth switch for
all simulation particles simultaneously. There are many ways to select the function α (t)
to achieve the desired switching from the δf method to the total-f method; however, the
simulation results should be independent of how the switch function is selected under the
condition that the noise due to large weight is suppressed, because system of equations is
always equivalent to the original Vlasov-Maxwell equations. For example, we can chose the
switch function to satisfy

d lnα

dt
=





0 , t − t0 < 0 ,

−a
(

t−t0
τ

)n
, 0 ≤ t − t0 < τ,

−a , τ < t − t0 ,

(14)

where t0 is the starting time of the switch, and τ is the duration of the switch. The starting
time t0 can be either prescribed before the simulation is started, or the switching can be
triggered automatically when the weight growth reaches a certain threshold. The power
index n and amplitude parameter a in Eq. (14) are chosen to satisfy aτ/ (n + 1) � 1, which
ensures that α ' 0 after the switching (t − t0 > τ) . An alternative switching scheme, which
uses the weight equation of the standard δf method, can be found in Ref. [21].

3 Collective excitations and instabilities for high-intensity bunched beams

For a single-species beam, we can neglect Az in the beam frame because |Az| � |φ| .To
investigate collective excitations in high-intensity bunched beams, we first assume that the
beam distribution is isotropic in the beam. Under this assumption, thermal equilibrium is
one example of an exact equilibrium solution of the Vlasov-Maxwell equations (φ0, f0) that
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can be used as the reference state for the δf method. Thermal equilibrium is specified by

f0 = f0(H) =
n̂

(2πmT )3/2
exp

(
−H

T

)
, (15)

H =
p2

2m
+ eφ0 +

1

2
m
(
ω2

⊥
r2 + ω2

zz
2
)

. (16)

Here, H is the invariant energy, T = const. is the (isotropic) temperature, and n̂ is the beam
number density at (r, z) = (0, 0). The equilibrium potential φ0 is determined self-consistently
from the Poisson equation

∇2φ0 = −4πen̂ exp

[
−

m (ω2

⊥
r2 + ω2

zz
2)

2T
−

eφ0

T

]
, (17)

which is readily solved numerically in the assumed model geometry of a perfectly conducting
cylindrical pipe with wall radius rw.The finite bunch-length changes the characteristics of the
linear eigenmodes in beams [22]. Shown in Fig. 1 are the spectra of the axisymmetric (∂/∂θ =
0) linear eigenmodes obtained from the simulations for bunched beams with normalized
space-charge intensity sb ≡ 4πn̂e2/2mω2

⊥
= 0.27, but for different bunch aspect ratios,

zb/rb = 0.71, 2.5, 10, and 100. Here rb and zb are the rms radius and half-length of the
beam. The spectra are obtained by taking the fast Fourier transform (FFT) of the time
history of perturbed potential at (r/rw, z/zmax) = (0.15, 0.25). Figure 1(a) is the case where
ω⊥ = ωz, corresponding to a nearly spherical charge bunch. The spectrum in Fig. 1(a) peaks
around ω/ω⊥ = 2, 4, 6, 8 ..., which is qualitatively similar to the case of an infinitely-long
coasting beam [2]. This is because even though the finite bunch length introduces a new
characteristic frequency in the longitudinal direction, the degenerate frequency ω = ω⊥ = ωz

is the only dominant characteristic frequency in the system. Because the space-charge forces
depress the betatron frequency of the charged particles, the spectra peak below, instead of
exactly on, the even integers. As the beam aspect ratio increases, additional eigenmodes
emerge in between ω/ω⊥ = 2, 4, 6, 8 ... . For example, there are two major peaks appearing
in the interval 0 < ω/ω⊥ < 2 for zb/rb = 2.5 [Fig. 1(b)]. These additional modes are the
result of a coupling between the transverse and longitudinal dynamics induced by the finite
length of the charge bunch. As the bunch length increases, more eigenmodes appear in the
intervals between even integers [Fig. 1(c)]. However, as the bunch length becomes large,
these additional eigenmodes congregate towards even integers [Fig. 1(c)]. When the bunch
length approaches infinity, the spectrum of an infinitely-long coasting beam [2] is recovered
[Fig. 1(d)]. Even though the spectra for a nearly spherical charge bunch and an infinitely-long
coasting beam are qualitatively similar, we note that the similarity is merely a consequence
of the degeneracy in the characteristic frequencies for the case in Fig. 1(a). The effects of
finite bunch length are evident in Fig. 1 from the fact that the spectra undergo interesting
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Fig. 1. Spectra of axisymmetric linear eigenmodes for bunched beams with normalized space-charge
intensity sb = 0.27 and different bunch aspect ratios zb/rb = 0.71, 2.5, 10, and 100. The values of
rb/rw are maintained at rb/rw = 0.35 for all cases. The spectra are obtained by taking the fast
Fourier transform (FFT) of the time history of perturbed potential at (r/rw, z/zmax) = (0.15, 0.25).

changes when the bunch length varies between these two limiting cases.

The large energy anisotropy characteristic of charged particle beams in particle accelerators
has long been thought as a possible free energy source to drive the electrostatic Harris insta-
bility [15–18]. To simulate this instability, it is desirable to start from quasi-steady equilibria
with anisotropic distribution function in the transverse and longitudinal directions. However,
as discussed previously [20], exact kinetic equilibria do not exist for anisotropic bunched
beams. It is necessary to construct a reference state which is an approximate kinetic equilib-
ria with anisotropic distribution function. For those cases where the transverse-longtitudinal
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coupling is weak, the transverse energy H⊥ and longitudinal energy Hz defined by

H⊥ =
p2

⊥

2m
+

m

2
ω2

⊥
r2 + eφ̃0(r, z), (18)

Hz =
p2

z

2m
+

m

2
ω2

zz
2 + e 〈φ0〉 (z) , (19)

are approximately conserved [20]. Here, 〈φ0〉 , φ̃0, and φ0 are defined as

〈φ0〉 (z) = φ0(z) − φ0(0) , (20)

φ̃0 (r, z) = φ0(r, z) − 〈φ0〉 (z) , (21)

φ0(z) =

∫ rw

0
rφ0(r, z)dr

r2
w/2

. (22)

As an example, we choose the reference distribution function f0 in the beam frame to be the
anisotropic thermal equilibrium distribution

f0 =
n̂

(2πmT⊥) (2πmTz)
1/2

exp
(
−

H⊥

T⊥

−
Hz

Tz

)
. (23)

Here, T⊥ and Tz are the constant transverse and longitudinal temperatures, respectively.
The reference density profile n0(r, z) and reference potential φ0(r, z) are determined self-
consistently from Eq. (10).

There are two terms that determine the dynamics of w in Eq. (7). The (df0/dt)δ term is driven
by the perturbed fields, and the second term (df0/dt)

0
is the deviation of the reference

state f0 relative to an exact equilibrium solution of the Vlasov-Maxwell equations. Some
straightforward algebra gives [20]

1

f0

(
df0

dt

)

0

= −
Ḣ⊥

T⊥

−
Ḣz

Tz
= Ḣz

(
1

T⊥

−
1

Tz

)
, (24)

where

Ḣz = evz
∂φ̃0 (r, z)

∂z
, (25)

and super-dot (̇) denotes (d/dt)
0

defined in Eq. (9). For a well-chosen reference state (f0, φ0),
the dynamics associated with (df0/dt)

0
has a longer time-scale for variation than that of

(df0/dt)δ.

Shown in Fig. 2(a) is the time history of an unstable, azimuthally-symmetric perturbation
relative to the reference state (f0, φ0) at the spatial location (r/rw, z/zmax) = (0.1, 0.25) for
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Fig. 2. (a) Time history of an unstable perturbation at one spatial location
(r/rw, z/zmax) = (0.1, 0.25) for a high-intensity anisotropic charge bunch with sb = 0.8,
Tz/T⊥ = 1/36, zb/rb = 40. (b) Unstable perturbation potential δφ plotted as a function of z/zb at
time t = 43/ω⊥.(b).

a high-intensity anisotropic charge bunch with sb = 0.8, Tz/T⊥ = 1/36, and zb/rb = 40.
Here rw is the wall radius and zmax is half-length of the simulation domain. The instability
growth rate is measured to be Im ω = γ = 0.1ω⊥, and the real frequency is ωr = Re ω ≈ ω⊥.
The simulation presented in Fig. 2 is carried out for the linear phase of the instability, using
the δf method in the linearization approximation. Because the dynamics of the reference
state associated with (df0/dt)

0
is slow in comparison with the instability evolution, the

(df0/dt)
0

term is neglected to emphasize the structure of the instability during the linear
stage. Note that the unstable structure localizes symmetrically in the vicinity of z/zmax =
±0.6 [Fig. 2(b)]. The localization is found to be more prominent for larger bunch length. As
zb/rb → ∞, the unstable structure becomes highly localized such that the beam intensity
is approximately uniform across the unstable structure in the longitudinal direction, and
the instability characteristics are asymptotic to those of long coasting beams with uniform
density. This is consistent with the fact that the growth rate decreases for increasing bunch
length, which has been numerically confirmed [22] .

We now turn to the long-term nonlinear evolution of the instability with dynamic back-
ground evolving from the initial reference state. Shown in Fig. 3 is the time history of the
potential perturbation at (r/rw, z/zmax) = (0.12, 0.20). It is clear that the dynamics contain
two time-scales. The fast time-scale dynamics corresponds to the evolution of the tempera-
ture anisotropy instability, and the slow time-scale dynamics corresponds to the background
dynamics of the anisotropic reference state. The fast time-scale instability has three phases.
Before t = 170/ω⊥ is the linear growth phase. Plotted in Fig. 4(a) is mode structure as a
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Fig. 3. Time history of an unstable perturbation at one spatial location (r/rw, z/zmax) = (0.12, 0.20)
for a high-intensity anisotropic charge bunch with sb = 0.8, Tz/T⊥ = 1/36,
zb/rb = 40, rb/rw = 0.26, and zb/zmax = 0.40.

Fig. 4. (a) Unstable mode structure as a function of z/zb at time t = 115/ω⊥,which represents the
linear mode structure. (b) Perturbed potential as a function of z/zb of the quasi-steady state at
t = 390/ω⊥.

function of z/zb at time t = 115/ω⊥,which represents the linear mode structure. The mode
structure relative to the slow time-scale background dynamics shows the same localization
feature as in Fig. 3(b). The nonlinear saturation phase spans from t = 170/ω⊥ to t = 250/ω⊥,
during which the amplitude of the instability nonlinearly saturates, but the perturbation
maintain approximately the same frequency and spatial structure. After t = 250/ω⊥, the
instability energy cascades partially to long wavelengths, and merges with the background
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dynamics, which eventually evolves into a quasi-steady state with the structure displayed in
Fig. 4(b). The deviation of the quasi-steady state relative to the initial reference state is at
the 15% level.

4 Conclusions

To effectively simulate the collective dynamics in high-intensity bunched ion beams, we
have extended the nonlinear δf PIC simulation method to allow the perturbation to be
defined relative to any reference state, and have developed a switching algorithm which can
smoothly switch between the δf and total-f methods. Using the extended δf method, we
have systematically studied the influence of finite bunch length on the spectra of collective
excitations in high-intensity beams, and the linear and nonlinear evolution of the energy
anisotropy instability. It is found that the finite bunch length introduces new collective
modes by coupling the longitudinal and transverse dynamics through the nonlinear space-
charge force, and the spectra undergo interesting changes when the bunch-length varies.
For the energy anisotropy instability, the unstable mode is symmetrically localized in two
regions away from the bunch center in the longitudinal direction. Nonlinearly, the instability
saturates at the 10% level, and couples to the background dynamics of the reference state.
A quasi-steady state is reached at the final stage, and the deviation of the quasi-steady state
relative the initial reference state is at the 15% level.
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